23 research outputs found

    New discussion concerning to optimal control for semilinear population dynamics system in Hilbert spaces

    Get PDF
    The objective of our paper is to investigate the optimal control of semilinear population dynamics system with diffusion using semigroup theory. The semilinear population dynamical model with the nonlocal birth process is transformed into a standard abstract semilinear control system by identifying the state, control, and the corresponding function spaces. The state and control spaces are assumed to be Hilbert spaces. The semigroup theory is developed from the properties of the population operators and Laplacian operators. Then the optimal control results of the system are obtained using the C0-semigroup approach, fixed point theorem, and some other simple conditions on the nonlinear term as well as on operators involved in the model

    An analysis of approximate controllability for Hilfer fractional delay differential equations of Sobolev type without uniqueness

    Get PDF
    This study focused on the approximate controllability results for the Hilfer fractional delay evolution equations of the Sobolev type without uniqueness. Initially, the Lipschitz condition is derived from the hypothesis, which is represented by a measure of noncompactness, in particular, nonlinearity. We also examined the continuity of the solution map of the Sobolev type of Hilfer fractional delay evolution equation and the topological structure of the solution set. Furthermore, we prove the approximate controllability of the fractional evolution equation of the Sobolev type with delay. Finally, we provided an example to illustrate the theoretical results

    An analysis on the approximate controllability results for Caputo fractional hemivariational inequalities of order 1 < r < 2 using sectorial operators

    Get PDF
    In this paper, we investigate the effect of hemivariational inequalities on the approximate controllability of Caputo fractional differential systems. The main results of this study are tested by using multivalued maps, sectorial operators of type (P, η, r, γ ), fractional calculus, and the fixed point theorem. Initially, we introduce the idea of mild solution for fractional hemivariational inequalities. Next, the approximate controllability results of semilinear control problems were then established. Moreover, we will move on to the system involving nonlocal conditions. Finally, an example is provided in support of the main results we acquired

    Optimal control results for impulsive fractional delay integrodifferential equations of order 1 < r < 2 via sectorial operator

    Get PDF
    This research investigates the existence of nonlocal impulsive fractional integrodifferential equations of order 1 < r < 2 with infinite delay. To begin with, we discuss the existence of a mild solution for the fractional derivatives by using the sectorial operators, the nonlinear alternative of the Leray–Schauder fixed point theorem, mixed Volterra–Fredholm integrodifferential types, and impulsive systems. Furthermore, we develop the optimal control results for the given system. The application of our findings is demonstrated with the help of an example

    A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r∈(1,2) with impulses

    Get PDF
    In this article, we look into the important requirements for exact controllability of fractional impulsive differential systems of order 1<r<2. Definitions of mild solutions are given for fractional integrodifferential equations with impulses. In addition, applying fixed point methods, fractional derivatives, essential conditions, mixed Volterra-Fredholm integrodifferential type, for exact controllability of the solutions are produced. Lastly, a case study is supplied to show the illustration of the primary theorems

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation &lt;92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p&lt;0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p&lt;0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    An Investigation on the Optimal Control for Hilfer Fractional Neutral Stochastic Integrodifferential Systems with Infinite Delay

    No full text
    The main concern of this manuscript is to study the optimal control problem for Hilfer fractional neutral stochastic integrodifferential systems with infinite delay. Initially, we establish the existence of mild solutions for the Hilfer fractional stochastic integrodifferential system with infinite delay via applying fractional calculus, semigroups, stochastic analysis techniques, and the Banach fixed point theorem. In addition, we establish the existence of mild solutions of the Hilfer fractional neutral stochastic delay integrodifferential system. Further, we investigate the existence of optimal pairs for the Hilfer fractional neutral stochastic delay integrodifferential systems. We provide an illustration to clarify our results
    corecore